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Abstract. We study ellipsoid bounds for the solutions (x,µ)∈R
n ×R

r of polynomial systems
of equalities and inequalities. The variable µ can be considered as parameters perturbing the
solution x. For example, bounding the zeros of a system of polynomials whose coefficients
depend on parameters is a special case of this problem. Our goal is to find minimum ellip-
soid bounds just for x. Using theorems from real algebraic geometry, the ellipsoid bound
can be found by solving a particular polynomial optimization problem with sums of squares
(SOS) techniques. Some numerical examples are also given.

Key words: Ellipsoid, Perturbation, Polynomial system, Real algebraic geometry, Semidefi-
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1. Introduction

We propose a method to find guaranteed bounds on the real solutions of a
polynomial system of equalities and/or inequalities of the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1(x1, . . . , xn;µ1, . . . ,µr)=0
...

φs(x1, . . . , xn;µ1, . . . ,µr)=0
ρ1(x1, . . . , xn;µ1, . . . ,µr)�0

...

ρt (x1, . . . , xn;µ1, . . . ,µr)�0,

(1.1)

where x = (x1, . . . , xn)
T ∈ R

n and µ = (µ1, . . . ,µr)
T ∈ R

r . For each 1� i � s

and 1 � j � t , φi and ρj are multivariate polynomials in (x,µ) ∈ R
n+r .

Throughout this paper, we partition the solution into two parts: the first
n components (x) and the last r components (µ). µ can be thought of as

�This work was supported by NSF Grant No. EIA-0122599.
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parameters perturbing the solution x. We are only interested in bounding
x for all µ determined by (1.1). x can be also be thought of as the pro-
jection of the solution (x,µ)∈R

n+r of (1.1) into the subspace R
n. We con-

sider only real solutions, since many practical problems concern only real
solutions.

Our goal is to bound the projected solution set defined as

S ={x ∈R
n :∃ µ∈R

r s.t. (x,µ) satisfies system (1.1)}.
For a given µ, there may be no real x satisfying (1.1), or one unique such
x, or several such x, or infinitely many such x. So S can be quite compli-
cated.

The following is an example of polynomial system:

(x1 −1)(x2 −1)(x3 −1)−µ1 =0

(x1 +x2 −3)(x2 +x3 −3)(x3 +x1 −3)−µ2 =0

(x1 +2x2 −x3)(x2 +2x3 −x1)(x3 +2x1 −x2)−µ3 =0

µ2
1 −0.12 �0, µ2

2 −0.12 �0, µ2
3 −0.12 �0.

As the µis get smaller, the solution x approaches one of the solutions of
the 27 3-by-3 linear systems implicitly defined by the first three equations
when µi = 0(i = 1,2,3). This example defines the solution set S for |µi |
�0.1(i =1,2,3).

The traditional approach in perturbation analysis of a system of equa-
tions is to find the maximum distance of the perturbed solutions to the
unperturbed solution, i.e. to find a bounding ball of smallest radius with
the unperturbed solution at the center. This approach works well when the
solution set is almost a ball and the unperturbed solution lies near the cen-
ter. Unfortunately, this is often not the case in practice, when the solution
set is very elongated. Instead, we seek a bounding ellipsoid of smallest vol-
ume (in a sense defined in Section 2), which can more effectively bound
many elongated sets.

The particular idea for finding minimum ellipsoids was introduced in
[3,4], where the authors try to find the minimum ellipsoids for linear sys-
tems whose coefficients are rational functions of perturbing parameters. In
this paper, we generalize these results to polynomial systems of equalities
and/or inequalities.

The computational complexity of our approach may be described as fol-
lows. Let D be the maximum degree of any polynomial in (1.1). Then
for fixed D our method can provide a guaranteed bounding ellipsoid in
polynomial time in the number of variables n and r. But to guarantee
the minimum bounding ellipsoid, the complexity can potentially grow much
faster (see Section 5).
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Throughout this paper, we will use the following notation. XT is the
transpose of a matrix X. In is the standard n-by-n identity matrix. Sn

+(Sn
++)

denotes the set of all the n-by-n symmetric positive semidefinite (definite)
matrices. A�0(A�0) means that the matrix A is positive semidefinite (defi-
nite). The polynomial inequality f �sos g means that f − g can be written
as a SOS of polynomials, which will be discussed in Section 3.

This paper is organized as follows. Section 2 introduces ellipsoid bounds
for the solution of (1.1). Section 3 introduces “sum of squares” polyno-
mials and their connection with semidefinite programming (SDP). Section
4 introduces results we need from real algebraic geometry. In Section 5,
we discuss how to find the ellipsoid bound by solving a particular SDP.
Section 6 will show two numerical examples.

2. Ellipsoid Bounds for Polynomial Systems

In this section, we formulate the ellipsoid bound for the projected solu-
tion set S. This idea of finding an ellipsoid bound is from [3,4], where the
authors consider the special case where each polynomial φi(x;µ) is affine
in x and rational in µ, and the ρj =ρj (µ) are quadratic in µ.

An ellipsoid in R
n may be defined as

E(P, z)={x ∈R
n : (x − z)T P −1(x − z)<1

}
, (2.1)

where P ∈Sn
++ is the shape matrix, and z∈R

n is the center of the ellipsoid.
By taking a Schur complement, the ellipsoid can also be defined as

E(P, z)=
{

x ∈R
n :
[

P x − z

(x − z)T 1

]

�0
}

. (2.2)

For example, the ellipsoid in the 2D plane given by

(x1 − z1)
2

a2
+ (x2 − z2)

2

b2
<1

has the shape matrix P = [ a2 0
0 b2

]
.

How do we measure the “size” of an ellipsoid? The “best” measure
would appear to be its volume, which is proportional to

√
det P . How-

ever, we will instead choose trace(P ) to measure the size, for two reasons:
(1) trace(P ) is an affine function, whereas

√
det P is not, which makes the

optimization problem tractable. (2) trace(P ) is zero if and only if all the
axes are zero, but

√
det P is zero if any one axis is zero.
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Now we can formulate the minimum ellipsoid problem as the following
optimization:

inf
P∈Sn++,z∈Rn

trace(P ) (2.3)

s.t.
(x − z)T P −1(x − z)<1
for all (x,µ) satisfying
φi(x,µ)=0, ρj (x,µ)�0

⎫
⎬

⎭
. (2.4)

What we will do in the following sections is to replace the constraint
(2.4) by certain matrix inequalities that can be solved by SDP.

3. Polynomials that are SOS

In this section, we briefly introduce SOS polynomials, and their connec-
tion with SDP; see [8,10] for more details. For notational convenience we
assume throughout this section that all polynomials are in x ∈R

n, i.e. x is
not necessarily a solution of (1.1).

First, every polynomial p(x) can be written as vT Av for some symmetric
matrix A, where v is the vector of monomials

v = [1, x1, . . . , xn, x
2
1 , x1x2, . . . ]T .

Since the entries in vector v depend on each other, the matrix A is not
unique. It can be shown [10] that all possible As satisfying p =vT Av form
an affine set

A=
{

A0 +
∑

i

αiAi :αi ∈R

}

,

where A0,A1, . . . are constant symmetric matrices.
For example, consider the following polynomial from [10]

F(x, y)=2x4
1 +2x3

1x2 −x2
1x

2
2 +5x4

2 .

After doing some algebra exercise, we can show that

F(x, y)=
⎡

⎣
x2

1
x2

2
x1x2

⎤

⎦

T ⎡

⎣
2 −α 1

−α 5 0
1 0 2α −1

⎤

⎦

⎡

⎣
x2

1
x2

2
x1x2

⎤

⎦ ,

where α is arbitrary.
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DEFINITION 3.1. A polynomial p(x) is a SOS polynomial if it can be
expressed as a finite sum of squares of other polynomials, i.e., p(x) =∑�

i=1 p2
i (x).

One good property of SOS polynomials is that they are closely related to
SDP. If a polynomial p(x)=∑i p

2
i (x), then we can find a particular A satis-

fying 0 �A∈A. In fact, we can write pi(x)=vT ai for some constant vector
ai , then p(x)=vT

(∑
i aia

T
i

)
v, and so A=∑i aia

T
i �0 is such a choice. Con-

versely, if we can find some A satisfying 0�A∈A, then the spectral decom-
position of A=∑i λ

2
i qiq

T
i provides the ai =λiqi defining the pi(x)=vT ai in

the SOS expression. Since A is affine, we can determine whether A contains
an A�0 by solving an SDP, as described in the following theorem:

THEOREM 3.2 (Parrilo [10]). A polynomial is SOS if and only if we can
find some A∈A such that A is positive semidefinite. This can be confirmed
by solving an SDP feasibility problem.

The computational complexity of this problem will depend on the size of
the corresponding SDP: a polynomial p(x) of degree d and n variables can
be represented as vT Av, where v is the monomial vector up to degree d/2.
The number of coefficients of p(x) is at most

(
n+d

d

)
, and the dimension of

matrix A is
(
n+d/2
d/2

)
. We return to the complexity issue in Section 5.

4. Some Theorems in Real Algebraic Geometry

This section will introduce some results about positive semidefinite (PSD)
polynomials, the positivstellensatz, and other theorems about infeasibility
of semi-algebraic sets (the subsets in Euclidean space that can be described
by polynomial equalities and/or inequalities). For a more detailed introduc-
tion to real algebra, see [1].

In this section, to comply with the traditional notation in multivariate
polynomial algebra, we will denote by x ∈R

n the variable of a multivariate
polynomial, not the solution to (1.1), unless explicitly stated otherwise.

DEFINITION 4.1. A polynomial p(x) is said to be positive semidefinite
(PSD) if p(x)�0, ∀ x ∈R

n.

PSD polynomials appear frequently in practice. Unfortunately, testing
whether a polynomial is PSD or not is an NP-hard problem if the polyno-
mial has degree at least four [7]. Therefore (unless P = NP) any algorithm
guaranteed to test the nonnegativity of a polynomial in every possible case
will run too slowly when the number of variables is large [8]. However, one
obvious sufficient condition for a polynomial to be PSD is that it be SOS.
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As we saw in Section 3, testing whether a polynomial is SOS is tractable,
i.e. can be done in polynomial time. Thus, unless P = NP, some PSD poly-
nomials are not SOS. Indeed, this is consistent with the solution to Hil-
bert’s 17th problem; see [12] for a good introduction. Now let Pn,d denote
the set of PSD polynomials of degree d in n variables, and let �n,d denote
the set of polynomials of degree d in n variables which are SOS. Clearly
�n,d ⊆ Pn,d , but the equality may not hold. Hilbert (1888, [2,12]) showed
that �n,d =Pn,d if and only if (n, d)∈{(1,�1), (�1,2), (2,4)}. However, the
first explicit polynomial that is PSD but not SOS appeared in 1967 [11,12],
which is the famous Motzkin polynomial M(x1, x2, x3)=x4

1x
2
2 +x2

1x
4
2 +x6

3 −
3x2

1x
2
2x

2
3 . The nonnegativity of M(x1, x2, x3) is obtained immediately from

the arithmetic-geometric mean inequality. The proof that M(x1, x2, x3) is
not SOS can be found in [12].

Let R[x1, . . . , xn] be the ring of polynomials with real coefficients
about variables x1, . . . , xn. Given polynomials q1, . . . , qm ∈ R[x1, . . . , xn], let
P(q1, . . . , qm) denote the preorder cone generated by the qi ’s, i.e.,

P(q1, . . . , qm)=
⎧
⎨

⎩

∑

I⊂{1,2,...,m}
σI (x)

∏

j∈I

qj (x)

∣
∣
∣
∣
∣
∣
σI SOS

⎫
⎬

⎭
.

Define the basic closed semi-algebraic set generated by the qi ’s as

S(q1, . . . , qm)={x ∈R
n : qi(x)�0, for all 1� i �m}.

THEOREM 4.2 (Stengle [15]). Let (fi)i=1,...,s , (hi)k=1,...,t be a set of polyno-
mials in R[x1, . . . , xn]. Then the following two properties are equivalent:

1. The following set is empty

{

x ∈R
n

∣
∣
∣
∣
fi(x)=0, i =1, . . . , s

hk(x)�0, k =1, . . . , t

}

; (4.1)

2. There exist polynomials λi and SOS polynomials σK such that

s∑

i=1

λifi +
∑

K⊂{1,2,...,t}
σK

∏

k∈K

hk +1=0.

This theorem is the so-called positivstellensatz in real algebraic geometry.
It is a powerful tool to testify the infeasibility of a polynomial system of
equalities and inequalities.
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However, the positivstellensatz involves cross products among different
hk’s, which makes the computation more expensive. To avoid this expense,
we will introduce other theorems which do not involve the cross products
of hk’s, i.e., just the linear part of preorder cone. The following assumption
and theorem are due to Jacobi [5] and Putinar [11], and used by Lasserre
[6].

ASSUMPTION 4.3. Let h1, . . . , h� ∈R[x1, . . . , xn] be polynomials such that
S(h1, . . . , h�) is compact. Assume that there exists a polynomial u(x) ∈
R[x1, . . . , xn] such that S(u) is compact and

u(x)=u0(x)+
�∑

i=1

ui(x)hi(x),

where u0, u1, . . . , u� are all SOS, i.e., u(x) is just the linear part of the pre-
order cone P(h1, . . . , h�).

In fact, Assumption 4.3 is often satisfied [6]. For example, if there is one
polynomial hj (x) such that S(hj ) is compact, or if all hi ’s are linear, then
Assumption 4.3 is satisfied. Another way to ensure Assumption 4.3 is true
is to add one redundant inequality h�+1 =a2 −‖x‖2

2 �0 for sufficiently large
a.

THEOREM 4.4 ([5,11]). Let h1, . . . , h� ∈R[x1, . . . , xn] be a set of polynomi-
als satisfing Assumption 4.3. Then every polynomial p(x), strictly positive on
S(h1, . . . , h�), can be represented as

p(x)=p0(x)+
�∑

i=1

pi(x)hi(x),

where p0, p1, . . . , p� are all SOS.

If Assumption 4.3 is not satisfied, we have another theorem, due to
Schmüdgen, which is a simplified version of the positivstellensatz.

THEOREM 4.5 ([13]). Let h1, . . . , h� ∈ R[x1, . . . , xn] be polynomials such
that S(h1, . . . , h�) is compact. Then every polynomial p(x), strictly positive
on S(h1, . . . , h�), must belong to P(h1, . . . , h�), i.e.,

p(x)=
∑

K⊂{1,2,...,�}
pK(x)

∏

i∈K

hi(x)

for some SOS polynomials pK(K ⊂{1,2, . . . , �}).
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In the rest of this section, x and µ will again denote the solutions
to polynomial system (1.1). All polynomials are in (x,µ) unless explicitly
stated otherwise.

Now return to the constraint (2.4). It holds if and only if

1− (x − z)T P −1(x − z)>0 for all
{

x ∈R
n

∣
∣
∣
∣
φi(x,µ)=0, i =1, . . . , s

ρj (x,µ)�0, j =1, . . . , t

}

.

Replacing one equality with two inequalities with opposite directions, we
can see that (1.1) is the same as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1(x1, . . . , xn;µ1, . . . ,µr) �0
...

φs(x1, . . . , xn;µ1, . . . ,µr) �0
−φ1(x1, . . . , xn;µ1, . . . ,µr) �0

...

−φs(x1, . . . , xn;µ1, . . . ,µr) �0
−ρ1(x1, . . . , xn;µ1, . . . ,µr) �0

...

−ρt(x1, . . . , xn;µ1, . . . ,µr) �0

(4.2)

THEOREM 4.6. Suppose the set of polynomials {±φ1, . . . ,±φs,−ρ1, . . . ,−ρt}
satisfies Assumption 4.3. Then if constraint (2.4) holds, there exist polynomials
λi =λi(x,µ), σj =σj (x,µ) such that

1− (x − z)T P −1(x − z)+
s∑

i=1

λiφi +
t∑

j=1

σjρj �sos 0

σ1, . . . , σt �sos 0.

Proof. Let p = 1 − (x − z)T P −1(x − z) and {±φ1, . . . ,±φs,−ρ1, . . . ,−ρt}
be the polynomials defining the semi-algebraic set in Theorem 4.4. Notice
that p(x) is strictly positive on S(±φ1, . . . ,±φs,−ρ1, . . . ,−ρt). Then by
Theorem 4.4, there exist SOS polynomials ϕ, τi , νi(i =1, . . . , s), and σj (j =
1, . . . , t) such that

1− (x − z)T P −1(x − z)=ϕ +
s∑

i=1

(τi −νi)φi −
t∑

j=1

σjρj .

Let λi =νi − τi . Then we get the result in the theorem.
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REMARK .
(i) By Theorem 4.2, the SOS inequalities in Theorem 4.6 are also suffi-

cient, in the sense that we can get only a weak instead of strict
inequality in (2.4). But this does not affect much in the optimization.

(ii) However, if {±φ1, . . . ,±φs,−ρ1, . . . ,−ρt} does not satisfy
Assumption 4.3, but S(±φ1, . . . ,±φs,−ρ1, . . . ,−ρt) is compact,
we can use Schmüdgen’s theorem 4.5 to get another similar equivalent
formulation of constraint (2.4), by adding those items involving cross
products.

We can also get a certificate of feasibility for (2.4) from Schmüdgen’s the-
orem 4.5.

THEOREM 4.7. The constraint (2.4) holds if and only if there exist polyno-
mials λi =λi(x,µ), σI =σI (x,µ) such that

1− (x − z)T P −1(x − z)+
s∑

i=1

λiφi −
∑

I⊂{1,...,t}
σI (−1)|I |∏

j∈I

ρj �sos

γ �sos 0, σI �sos 0, ∀I ⊂{1, . . . , t}.

Proof. Verify directly by Theorem 4.2.

REMARK .
(i) In Theorems 4.6 and 4.7, the polynomials λi , σj and others may

depend on P and z.
(ii) The degree bounds and structures of λi and σj are not clear yet, as far

as the authors know. There are some degree bounds for Schmüdgen’s
Theorem 4.5 [14,16]. The bounds are functions of 1/ε which tends to
infinity as ε approaches to zero. Here ε is the minimum value of 1 −
(x − z)T P −1(x − z) over the solution set.

(iii) For arbitrary fixed degrees, any ellipsoid satisfying Theorem 4.6 or 4.7
is an upper bound for the solution set S.

(iv) However, as the readers will see in the next section, the found ellip-
soids will converge the minimum one when the degrees of λi and σj

go to infinity.

5. Finding the Ellipsoids

In this section, we will show how to solve the problem (2.3)–(2.4) by for-
mulating it as an optimization with SOS polynomials. Denote by RN [x,µ]
all the real polynomials in (x,µ) with degrees less than or equal to N .
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By Theorems 4.6–4.7 and the remarks afterwards, the problem (2.3)–(2.4)
can be relaxed as

ÊN : min
P∈Sn

++,z∈R
n

λi ,σj ∈RN [x,µ]

trace(P )

s.t. 1− (x − z)T P −1(x − z)+
s∑

i=1

λi(x,µ)φi

+
t∑

j=1

σj (x,µ)ρj �sos 0

σ1, . . . , σt �sos 0

which can be rewritten as

min
P∈Sn

++,z∈R
n

λi ,σj ∈RN [x,µ]

trace(P )

s.t. 1−
[
x

1

]T [
I −z

]T
P −1 [I −z

]
[
x

1

]

+
s∑

i=1

λi(x,µ)φi +
t∑

j=1

σj (x,µ)ρj �sos 0

σ1, . . . , σt �sos 0.

Now by introducing a new matrix variable Q, this becomes

min
Q,P∈Sn

++,z∈R
n

λi ,σj ∈RN [x,µ]

trace(P )

s.t. 1−
[
x

1

]T

Q

[
x

1

]

+∑s
i=1λi(x,µ)φi +

∑t
j=1σj (x,µ)ρj �sos 0

[
I −z

]T
P −1[I −z

]�Q

σ1,...,σt �sos 0.

Taking a Schur complement, this is equivalent to

EN : p∗
N = min

Q,P∈Sn,z∈R
n

λi ,σj ∈RN [x,µ]

trace(P ) (5.1)

s.t. 1−
[
x

1

]T

Q

[
x

1

]

+
s∑

i=1

λi(x,µ)φi +
t∑

j=1

σj (x,µ)ρj �sos 0

(5.2)
[

P
(
I −z

)

(
I −z

)T
Q

]

�0 (5.3)

σ1, . . . , σt �sos 0. (5.4)
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The objective function is an affine function of P , and the constraints are either
linear matrix inequality (LMIs) or SOS inequalities, which are also essentially
LMIs ([10]). Therefore it can be solved by a standard SDP routine.

Now we consider the complexity of problem EN . Let D be the max-
imum degree of polynomials defining system (1.1). From the discussion
at the end of Section 3, we can see that the LMI corresponding to (5.2)
has size

(
n+r+(N+D)/2

(N+D)/2

)
, LMI (5.3) has size 2n+1, and LMIs corresponding

to (5.4) have size
(
n+r+N/2

N/2

)
. Therefore, the total cost for solving problems

(5.1)–(5.4) via SDP is O(M3+1/2), where M =(n+r+(N+D)/2
(N+D)/2

)
. When D and N

are fixed, this is a polynomial function of n and r.
As we pointed out in the remark after Theorem 4.7, for any fixed degree

N , the ellipsoid EN found in EN is a bound for the solution set S. When
the degree N is higher, the ellipsoid bound by solving EN is tighter. The
convergence of EN is described as follows.

THEOREM 5.1. Suppose Assumption 4.3 is satisfied for polynomial system
(4.2). Then the trace p∗

N of the ellipsoid EN found in EN converges to trace
p∗ of the minimum ellipsoid containing the solution set S when the degree N

tends to infinity.

Proof. Let E∗ ={x ∈R
n : (x −z∗)T (P ∗)−1(x −z∗)�1} be the minimum ellip-

soid containing the solution set S, with trace(P ∗)=p∗. Then for arbitrary
ε >0, the polynomial 1− (x −z∗)T (P ∗ +εIn)

−1(x −z∗) is strictly positive on
the set of (x,µ) defined by (4.2). By Theorem 4.4, there exist some gen-
eral polynomials λi(x,µ)(i = 1, . . . , s) and SOS polynomials σj (x,µ)(j =
1, . . . , t) such that

1− (x − z∗)T (P ∗ + εIn)
−1(x − z∗)+

s∑

i=1

λiφi +
t∑

j=1

σj (x,µ)ρj �sos 0.

As we showed in this section, problems ÊN and EN are equivalent for-
mulations. So they have the same optimal objective values. When N is
large enough, then in ÊN we find one feasible solution with objective value
p∗ +nε. Thus it must be true that p∗

N �p∗ +nε. Here n is the dimension of
x, which is a constant. Since E∗ is minimum, it holds that p∗

N �p∗. There-
fore we have that lim

N→∞
p∗

N =p∗.

5.1. alternative formulation

We can obtain another formulation like (5.1)–(5.4) starting from
Theorem 4.7 instead of Theorem 4.6. The new optimization is
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min
Q,P∈Sn,z∈R

n

λi ,σj ∈RN [x,µ]

trace(P )

s.t.

(

1−
[
x

1

]T

Q

[
x

1

])

γ +∑s
i=1 λi(x,µ)φi

−
∑

I⊂{1,...,t}
σI (−1)|I |∏

j∈I

ρj �sos 0

σI �sos 0, ∀I ⊂{1, . . . , t}
[

P
(
I −z

)

(
I −z

)T
Q

]

�0

Here the SOS polynomial γ must be specified before hand to preserve the
convexity of the problem. In practice, we usually choose γ =1 and the sub-
sets I ⊂{1, . . . , t} with cardinality |I |=1. As the readers may see, formula-
tion (5.1)–(5.4) is a special case of this one (with γ =1). One might expect
that this new formulation would give us better ellipsoid bounds. However,
as the authors discovered in practice, choosing other γ (like x2

1 + x2
2 + . . . )

or choosing subsets I ⊂{1, . . . , t} with |I |> 1 does not help much in gen-
eral, and on the other hand it could increase the complexity greatly and
cause numerical convergence difficulties in SOSTOOLS.

6. Numerical Examples

In this section, we will illustrate how the algorithm works for two exam-
ples. All of them are solved via SOSTOOLS [9].

EXAMPLE 1. Consider the following polynomial system of two equations
and two inequalities.

(1+µ2
1)x

2
1 +µ2x1x2 + (1−µ2

2)x
2
2 + (µ1 +µ2)x1 + (µ1 −µ2)x2 −1=0

(1−µ2
1)x

2
1 +µ1x1x2 + (1+µ2

2)x
2
2 + (µ1 −µ2)x1 + (µ1 +µ2)x2 −1=0

µ2 − ε2 �0,µ2
2 − ε2 �0

where ε = 0.1. Formulate the optimization (5.1)–(5.4) for this polynomial
system, and then solve it by SOSTOOLS. In this problem, n=2, r =2,D=4.
We choose N = 2 since any nonconstant SOS polynomials have degree at
least 2. The resulting 2D-ellipsoid is at the top of Figure 1. The asterisks
are the solutions (x1, x2) when (µ1,µ2) are chosen randomly according to
the two inequalities. As you can see, the found ellipsoid is much larger than
the set of real solutions. This is because the solution set is not connected.
However, if we want more information about one branch, we can add one
more inequality of the form (x1 −a)2 + (x2 −b)2 � r2, where a, b, r are chosen
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Figure 1. The top one is ellipsoid for the original system without adding any inequalities; the
middle picture is obtained by adding inequality (x1 +0.6)2 + (x2 +0.6)2 �0.62; the bottom pic-
ture is obtained by adding inequality (x1 −0.9)2 + (x2 −0.8)2 �0.82.
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according to the user’s interests for the solution region, and then solve the
optimization problem again. The role of this new inequality is that it can
help to find the ellipsoid bound for just one solution component, and it also
assures that Assumption 4.3 is satisfied. The middle and bottom pictures are
obtained by adding two such different polynomials respectively, leading to
much tighter bounds.

EXAMPLE 2. This example demonstrates how to find a minimum ellipsoid
bounding a very elongated set, as indicated in the introduction. Consider
the following example:

x2
1x

2
2 −2x1x2 +x2

2 −3/4�0

x2
1 −6x1 +x2

2 +2x2 −6�0

Here n=2, r =2,D =4. We also choose N =2 as in Example 1. The com-
puted ellipsoid is shown by gray curve in Figure 2. The center of the ellip-
soid is

[
4.2970 0.2684

]T
and its shape matrix is

[
6.6334 −0.3627

−0.3627 0.2604

]
. The short

axis is 0.9795 and the long axis is 5.1591. The asterisks are the solutions
(x1, x2) satisfying the system defined by the above polynomial inequalities.
As we can be see, all the asterisks are contained inside the ellipsoid and
a few are near the boundary. This is consistent with our conclusions in
Section 5.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

–1.5

–1

–0.5

0

0.5

1

1.5

2

Figure 2. This is the ellipsoid found for Example 2.



MINIMUM ELLIPSOID BOUNDS FOR SOLUTIONS 525

Acknowledgements

The authors would like to thank professors L. El Ghaoui, M. Gu,
J. Lassare, P. Parrilo, B. Sturmfels and two referees for their fruitful sug-
gestions which helped improve this paper.

References

1. Bochnak, J., Coste, M. and Roy, M-F. (1998), Real Algebraic Geometry, Springer.
2. Choi, M.D., Lam, T.Y. and Reznick, B. (1995), Sums of squares of real polynomials,

Proceedings of Symposia in Pure Mathematics 58(2), 103–126.
3. Calafiore, G. and El Ghaoui, L. (1999), Confidence ellipsoids for uncertain linear equa-

tions with structure, Proc. Conf. Decision and Control, December.
4. Calafiore, G. and El Ghaoui, L. Ellipsoid bounds for uncertain linear equations and

dynamical systems, to appear in Automatica, http://robotics.eecs.berkeley.edu/∼elghaoui.
5. JACOBI, T. (2001), A Representation theorem for certain parially ordered commutative

rings, Mathematische Zeitschrift 237(2), 259–273.
6. Lasserre, Jean B. (2001), Global optimization with polynomials and the problem of

moments, SIAM Journal of Optimization 11(3), 796–817.
7. Nesterov, Yu. (2000), Squared functional systems and optimization problems. In: Frenk, H.

et al. (eds.), High Performance Optimization, Kluwer Academic Publishers, pp. 405–440.
8. Parrilo, Pablo A. (2000), Structured semidefinite programs and semialgebraic geometry

methods in robustness and optimization. Ph.D Thesis, Californial Institute of Technology.
9. Prajna, S., Papachristodoulou, A. and Parrilo, Pablo A. SOSTOOLS User’s Guide.

http://control.ee.ethz.ch/∼parrilo/SOSTOOLS/.
10. Parrilo, Pablo A. (2003), Semidefinite programming relaxations for semialgebraic prob-

lems, Mathematical Program, no. 2, Ser. B, 96, 293–320.
11. Putinar, M. (1993), Positive polynomials on compact semi-algebraic sets, Indiana Uni-

versity, Mathematics Journal 42, 203–206.
12. Reznick, B. (2000), Some concrete aspects of Hilbert’s 17th problem. In: Contemporary

Mathematics, Vol. 253, American Mathematical Society, pp. 251–272.
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